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ABSTRACT

Network security is an area of increasing importance in commercial, public and private environments.
Much research has been done in the area of design and analysis of the cryptographic protocols that
provide this security. However, there has been little focus on research into the correctness of the
implementations of these protocols, as is evidenced by the number of security flaws found in im-
plementations of cryptographic protocols in commercial software systems on a regular basis. In this
research project we investigate the development of a code generation tool for generating protocol im-
plementations that can be proven to meet their specifications. Requirements for generating such high
integrity code involve using a cryptographic protocol specification language that has formal seman-
tics, ideally a target implementation language that also has formal semantics and a translation process
between the two that is proven to preserve the meaning of the specification in the mapping to the
implementation. The ability to automatically generate protocol implementations from their specifica-
tions will also facilitate analysis such as comparing the performance of protocols with the same goals
and testing the scalability of protocols for secure group communication, as well verification of other
existing implementations of protocols.
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GENERATION, ANALYSISAND VERIFICATION OF
CRYPTOGRAPHIC PROTOCOL IMPLEMENTATIONS

1 INTRODUCTION

Security in networked environments is an area of increasing importance, as it makes electronic com-
merce, secure personal communications and other important activities possible. Much research has
been conducted in the area of design and analysis of cryptographic protocols which provide secure
communication with one or more of confidentiality, authentication, integrity and non-repudiation.
This research has resulted in design guidelines [1], belief logics such as GNY [8] and BAN [4] for
analysing the security properties of protocols and attack construction (e.g. using strand spaces [7] to
determine if the protocol is vulnerable to attacks such as replay or man in the middle attacks).

While this helps the development of cryptographic protocols without vulnerabilities, there has not
been much focus on the correct implementation of cryptographic protocols. As is repeatedly shown,
cryptographic protocol implementations coded by human programmers are often error prone. Imple-
mentation flaws have been found in implementations of PPTP [13], SSL [14], RADIUS [10] and
many other cryptographic protocols. While some security flaws are a result of poor coding practices,
e.g. unchecked buffer access, many are a result of the protocol being incorrectly implemented or
misunderstood.

Depending on the language used to specify the protocol, many of the actions required to verify that
protocol run may progress from the current round to the next, are implicit and easily missed by the
protocol implementer. Even if the specification language is formally defined and explicitly states each
action to be performed, it is not unusual for aspects to be overlooked resulting in an incorrect and/or
vulnerable implementation.

The initial aim of this research project is develop a code generation tool that will be able to auto-
matically generate code that implements a cryptographic protocol, given the protocol’s formal spec-
ification. In addition, the implementation must be able to be proven to be correct according to that
specification. In this context we define a correct implementation as one that can be proven to perform
all the steps required by the specification in order for a protocol run to complete correctly. This means
that for each round in the protocol run, the implementation must be guaranteed to perform every action
specified (e.g. verification of components in the received message) in order for the implementation to
progress to the next round.

Proving the absence of flaws resulting from poor coding practice, such as unchecked buffer access -
which may allow buffer overflow attacks against the implementation, does not fall within the scope
of this project. Never the less, by choosing an implementation language that runs in a managed



environment and has built-in checked array types (e.g. Java), we hope to avoid most vulnerabilities of
this type. Proving the correctness of the cryptographic algorithm implementations also falls outside
the scope of this project.

The ability to automatically generate protocol implementations will facilitate analysis such as com-
paring the performance of protocols with the same security goals, testing the scalability of protocols
for secure group communication and comparing the performance of various cryptographic library im-
plementations. It will also provide a way to test other cryptographic protocol implementations, by
automatically generating attack programs that check that the implementation correctly verifies each
message before proceeding to the next round of the protocol. In addition it will allow us to demon-
strate and verify the feasibility of protocol level attacks by generating code that implements them.
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Figure 1: Overview of Cryptographic Protocol Development

Figure 1 places this project in context given the wider area of cryptographic protocol development.
Previous, and current projects at the University of Cape Town, e.g. the SPEAR Il [12] modeling
and analysis tool, have addressed the areas of protocol specification and inference analysis using the
GNY logic. This project will hopefully complement them by providing the final phase of protocol
development, the actual implementation.

2 CODE GENERATION REQUIREMENTS

In order to meet the aims of this project, some guidelines or methods need to be followed when
developing the code generation tool. Requirements for generating code for use in safety critical en-



vironments, by means of translating from a source specification language to a target implementation
language, have been discussed by Whalen and Heimdahl in [15]. As code for safety critical envi-
ronments and code that implements cryptographic protocols should have similar properties, i.e. a
high level of integrity is required, the discussion in [15] is relevant to the development of the code
generation tool.

They identify the five following requirements for high integrity code generation:

1. “The source and target languages must have formally well-defined syntax and semantics.” [15,
page 2]

2. “The translation between a specification expressed in a source language and a program ex-
pressed in a target language must be formal and proven to maintain the meaning of the specifi-
cation.” [15, page 3]

3. “Rigorous arguments must be provided to validate the translator and/or generated code.” [15,
page 4]

4. “The implementation of the translator must be rigorously tested and treated as high assurance
software.” [15, page 4]

5. “The generated code must be well structured, well documented, and easily traceable to the
original specification.” [15, page 4]

Although we do not expect to be able to meet the 4th requirement, due to time and resource con-
straints, fulfilling the other requirements seem a reasonable minimum target, and they will be referred
to in the following sections where the choice of specification language and implementation language
is discussed.

3 CRYPTOGRAPHIC PROTOCOL SPECIFICATION LANGUAGE
3.1 Options

In choosing a specification language the 1st requirement of high integrity code generation should be
born in mind, i.e. that it has formal semantics. As we want the translation processes to map from
constructs in the specification language to constructs in the implementation language that have the
same meaning, we need to know the formal meaning of the constructs in the specification language,
and having formally defined semantics provides exactly this.

The Standard Notation (SN), often used in texts on cryptographic protocols, does not meet this cri-
terion. While SN is fairly intuitive and easy to read, it does not provide a means to specify the goal



of the protocol, the initial assumptions or beliefs of the principals. As it lacks formal semantics, the
assertions that need to be made at each round of a specified protocol are implied and may be missed
by the reader. To address exactly these shortcomings, languages such as the Common Authentica-
tion Protocol Specification Language (CAPSL) [5] and Cryptographic Protocol Analysis Language
(CPAL) [16] have been developed. They both have formally defined semantics and incorporate ways
to specify assumptions, beliefs, initial possessions and goals of protocols.

3.1.1 CAPSL and CIL

CAPSL has been developed specifically for use with cryptographic protocol analysis tools. There are
already a number of tools that use it to specify input, such as those described in [3] and [11]. Among
its strengths are that it uses a syntax that closely resembles SN and is thus easily humanly writable
and readable. It also has an intermediate form, CAPSL Intermediate Language (CIL), that is based on
re- writing logic and also provides the formal semantics for CAPSL. This form of the language has
been specifically designed to be easy to translate to other representations that analysis tools may use
internally.

Unfortunately it seems that currently the only way to translate from CAPSL to CIL is by use of a
translation program that uses Maude, a system that supports equational and re-writing logic by the
CAPSL developers. Unfortunately the Maude based translator is described as experimental and does
fully implement the translation from CAPSL to CIL.

3.1.2 CPAL

Where CAPSL is relatively widely used, CPAL does not seem to have enjoyed the same success.
While it provides the same advantage as CAPSL, it is simpler and more concise and does not require
an intermediate form that formally specifies its meaning. Its formal semantics are defined by means
of pre and post conditions.

3.2 Chosen Specification Language: CAPSL

As both languages meet the desired requirements, the deciding factor is the number of existing tools
for working with the language, e.g. parsing, analysis and so on. CAPSL is definitely stronger here
and is thus the specification language of choice.



4 |IMPLEMENTATION LANGUAGE
4.1 Options

The first requirement for high integrity code generation states that the target or implementation lan-
guage needs to have its semantics formally defined. Unfortunately formal specifications for pro-
gramming languages, especially the commonly used procedural and object orientated ones such as
C, C++ and Java, are rare. This is largely due to these languages having been designed without the
formal specification of semantics in mind, thus making the task of formally defining them retroac-
tively complex and lengthy. There are some exceptions, and also some projects that have looked to
define semantics formally for subsets of the Java language. One of the aforementioned exceptions is
Scheme, a functional, LISP like language which has formally defined denotational semantics for the
whole language.

411 Java

Java is a widely adopted object orientated language with a C++ like syntax. Although it runs in a
managed environment, with resulting advantages such as memory management, safe array types and
no pointer arithmetic, it has fairly strong performance and is widely used to implement OLTP servers
and the like. Java also has a large collection of well defined APIs for all sorts of tasks, including
cryptographic operations. However, formal semantics have only been defined for a subset of the
language [2], [9].

This lack of formal semantics for all of the Java language is a major drawback. It makes it difficult to
prove that the translation process maps the specification language constructs to correct Java language
constructs. This is because in order for the mapping from a specification construct to an implemen-
tation construct to be defined, the meaning of both constructs needs to be clear, unambiguous and of
course equivalent, something which could be determined given formal semantics for both languages.

One option is to relax an aspect of the 1st requirement and translate from the specification language
to a set of well defined Java objects and methods that are assumed to correctly implement the data
and actions they represent. In this case it could still be shown that the correct Java code is called for
each action, assertion and transition in the protocol, but there would be no guarantee that the actions,
assertions and transitions were implemented correctly.



4.1.2 Scheme

Scheme is a LISP like functional language with concise formally defined semantics [6]. As an
interpreted functional language it does not have the same performance of commonly used procedural
languages like C, C++ and to a lesser extent Java. Also, although most Scheme implementations have
libraries for console, file and network 10, cryptographic libraries do not seem to be readily available.
It may, however, be possible to work around this by making calls to native code that implements
cryptographic algorithms.

4.2 Chosen Implementation Language: Scheme or Java

At this stage it seems as if Scheme is the more appropriate choice. Provided the work around to use
native cryptographic libraries mentioned previously is not a significant technical hurdle, the simplicity
and the fact that the language is formally defined are strong advantages. That said further investigation
into the projects to formally specify semantics for Java is justified, and it may yet prove to be the better
choice.

5 TRANSLATION

Considering requirements 2 and 3 for high integrity code the code generation tool is probably best
implemented in Prolog or a similar rules based declarative language. This would allow the rules for
translation, or mapping, from the specification language constructs to the implementation language
constructs to be clearly defined. A language such as Prolog can then apply these defined rules to
perform the mapping from specification to implementation.

6 ANALYSISAND VERIFICATION OF PROTOCOLS

Upon completion of the code generation tool, we would like to use the ability to generate protocol

implementations to conduct various forms of analysis.

6.1 Managed Environment for Protocol Runs

We propose the development of an environment to execute controlled and monitored protocol runs.
This will facilitate protocol analysis by allowing a protocol run to be traced, monitored for specified
events and even manually interacted with by injecting and/or intercepting messages in the message
flow. The environment will provide a way for the principles in a protocol run to communicate by



bypassing the network stack, allowing performance measurement to be made that aren’t subject to
fluctuations of network traffic.

6.2 Protocol Analysis

6.2.1 Comparison of Protocols

We would like to be able to compare the performance of cryptographic protocols that have the same
security goals. Being able to automatically generate implementations for protocol will give us the
ability to do this kind of performance analysis based on empirical measurements, as opposed to esti-
mating the performance based counting the number of protocol rounds and the type of cryptographic
algorithms employed.

6.2.2 Group Protocol Scalability

In a similar vein, testing the scalability of protocols that allow communication between large numbers
of principles would also be possible.

6.3 Verification of Protocols Implementations

Given the ability to automatically generate an implementation for a protocol, we would like to extend
the code generation tool to automatically generate variations on protocol implementations that test
other existing implementations of the same protocol. For example, by generating an implementation
for the initiating principle of a protocol that sends certain corrupted or specifically selected invalid
message components, one could test that the implementation of the responding principle correctly
verifies the messages it receives before preceding to the next round of the protocol.

6.4 Implementing Protocol Level Attacks

As protocol level attacks can be specified in a similar way to protocols themselves, the code generation
tool could also be used to demonstrate existing attacks against protocols, as well as experiment with
new attacks.



7 CONCLUSION

In this paper we have discussed our intended approach to developing a code generation tool for im-

plementing cryptographic protocols and the possible uses for this in the analysis and verification of
protocols. We have also covered some of the issues that will need to be addressed as far as delivering
a high level of confidence in the output of the code generation tool. Finally, we have listed some of

the analysis and verification we would like to perform once the code generation tool is working.
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