
GENERATING NETWORK SECURITY
PROTOCOL IMPLEMENTATIONS FROM
FORMAL SPECIFICATIONS

Benjamin Tobler
Department of Computer Science, University of Cape Town
Private Bag, Rondebosh 7701, South Africa

btobler@cs.uct.ac.za

Andrew C.M. Hutchison
Department of Computer Science, University of Cape Town
Private Bag, Rondebosch 7701, South Africa

hutch@cs.uct.ac.za

Abstract We describe the Spi2Java code generation tool, which we have developed in an
attempt to bridge the gap between formal security protocol specification and ex-
ecutable implementation. Implemented in Prolog, Spi2Java can input a formal
security protocol specification in a variation of the Spi Calculus, and generate
a Java code implementation of that protocol. We give a brief overview of the
role of code generation in the wider context of security protocol development.
We cover the design and implementation of Spi2Java which we relate to the
high integrity code generation requirements identified by Whalen and Heim-
dahl. By defining a Security Protocol Implementation API that abstracts crypto-
graphic and network communication functionality we show that protocol logic
code can be separated from underlying cryptographic algorithm and network
stack implementation concerns. The design of this API is discussed, particularly
its support for pluggable implementation providers. Spi2Java’s functionality is
demonstrated by way of example: we specify the Needham-Schroeder Public
Key Authentication Protocol, and Lowe’s attack on it, in the Spi Calculus and
examine a successful attack run using Spi2Java generated implementation of the
protocol roles.

Keywords: Code generation, Formal methods, Java, Process algebra, Prolog, Security, Spi
Calculus

2

Introduction

Formal methods have been widely and successfully used to specify net-
work security protocols and analyse their security properties to ensure cor-
rectness M. Burrows and Needham, 1996; L. Gong and Yahalom, 1990; Lowe,
1995; Abadi and Gordon, 1998; Thayer et al., 1999. The same emphasis has,
however, not been placed on the correctness of concrete implementations of
these security protocol specifications. This is evident when one considers the
number of security alerts issued for implementations of various security pro-
tocols. Flaws have been discovered in many software vendors’ SSL imple-
mentations in the last year alone, including, but not limited to companies such
as Apple, SCO, Microsoft, Cisco, and RSA and open source organizations
OpenSSL, KDE and Apache CERT, a; CERT, c; KDE, ; CERT, b. It is clear
then that security protocol research has been successful in verifying specifica-
tions, but that errors can still be introduced during implementation, leaving a
gap between specification (formal and otherwise) and implementation.

In this paper we examine an approach to bridging this gap, by means of
automatic code generation, in a manner that complements and integrates with
the already existing formal methodologies for security protocol analysis.

Our approach entails the specification of a security protocol, in a variation
of the Spi Calculus, which is used as input into our Spi2Java code generation
tool. Spi2Java compiles the specification down to Java code that is a concrete
implementation of the protocol.

Choosing the Spi Calculus as a specification language provides the ben-
efits of formal specification: it allows the security protocol to be subject to
analysis to ensure the desired security properties (i.e. one or more of authen-
ticity, confidentiality and integrity) hold. Its formally defined semantics also
provide a precise definition of the expected behaviour of the protocol, and so
facilitates code generation and verification. These properties are particularly
useful in helping to meet some of Whalen and Heimdahl’s requirements for
high-integrity code generation identified in Whalen and Heimdahl, 1999.

Regarding related work, we are aware of some other projects in this area:
one on generating code from CAPSL specifications Millen and Muller, 2001,
COSP-J Didelot, , AVGI Dawn Xiaodong Song and Phan, 2001 and another
tool also called Spi2Java (which only came to our attention after the initial draft
of this paper). COSP-J is based to some extent on Casper, a tool for convert-
ing fairly abstract security protocol specifications to CSP specifications, and
produces Java code that implements protocols. Perrig et. al. briefly describe a
tool for automatic security protocol implementation as part of AVGI in Dawn
Xiaodong Song and Phan, 2001, however we have not been able to find further
details of this tool in any available publications. Durante et. al. describe their
own Spi2Java tool in Davide Pozza and Durante, 2004. They do not address

Generating Network SecurityProtocol Implementations fromFormal Specifications 3

the issue of the correctness of the generated code wrt Spi, nor do they discuss
the implementation of the tool itself, i.e. how the translation from Spi to Java
is performed. We have, as yet, not found any published work detailing verifi-
cation or proof of correctness of automatically generated code that implements
security protocols.

Though there is some overlap with these projects, we believe aspects of
our Spi2Java tool and our continuing work on it, make some contribution to
the area of code generation for automatic security protocols implementation.
We use the Spi Calculus as input, allowing our Spi2Java to complement ver-
ification tools, such as the MMC model checker for the � and Spi Calculi
Ping Yang and Smolka, 2003. Though abstraction of security functionality,
e.g. Java’s Cryptographic Extensions, is definitely not novel, our clean and
complete separation of generated protocol logic code from cryptographic and
network implementation specifics via an API provides even greater flexibility
to the protocol implementor. Finally our continuing work towards meeting the
requirements of high integrity code generation, specifically proving that our
mapping from Spi to Java code segments preserves the Spi semantics in the
Java code, will hopefully provide a high level of confidence in the correctness
of the protocol logic implementation.

The layout of this paper is as follows: An overview of the security proto-
col development process is given indicating the role of a formal specification
language throughout the process and emphasising the implementation and im-
plementation verification phases of the process, where code generation can be
used. We argue for the suitability of the Spi Calculus in the role of specifi-
cation language, and define a variation of it to facilitate code generation. We
cover the separation of protocol logic implementation from cryptographic al-
gorithm and network communication implementation, by abstraction using the
SPP API and the resulting benefits of this. We also define a mapping from Spi
Calculus constructs to Java code segments and describe the code generation
tool we have developed in Prolog that defines rules for these mappings. We
look at verification of the tool and the generated code as well as current work
validating the mappings from Spi Calculus constructs to Java code. Finally, we
conclude the paper by assessing the contribution of this approach to bridging
the gap between security protocol specification and implementation.

1. Security Protocol Development

Given that developing protocols to provide network security is a special-
isation of software development in general, a security protocol development
process could be described as follows (see Figure 1):

Requirements: Like any system, there may be requirements unrelated to
security. However the requirements of interest in this paper are the desired se-

4

 Code Generation

Design and Specification

Design and specify protocol that has

desired security properties.

Protocol Analysis

Analyse specification to ensure security

properties hold.

Implementation

Generate implementation of the protocol

from specification.

Implementation Verification

Verify implementation conforms to

specification.

Executable Program

Is specification

correct?

Yes

No

Spec

Spec

Spec

Implementation

correct?

Yes

No

Requirements

Security properties.

Figure 1. Security protocol development process.

curity properties of the protocol - authentication, confidentiality and integrity.
For brevity we view these requirements as input to the development process as
opposed to a phase.

Design and Specification: A protocol that attempts to meet the require-
ments is designed and specified. The number of messages exchanged, message
contents and the cryptographic mechanisms employed will all depend on the
security properties stated in the requirements.

Protocol Specification Analysis: The protocol specification is analyzed,
potentially by means of inference logics, e.g. BAN M. Burrows and Needham,
1996 and GNY L. Gong and Yahalom, 1990 and attack analysis techniques,
e.g. strand-space analysis Thayer et al., 1999 and model checking Lowe, 1996;
Denker, 2000 to determine whether the required security properties hold. If
not, the analysis results are fed back to the design and specification phase and
the protocol is modified or redesigned. Otherwise the process can progress to
the implementation phase.

Generating Network SecurityProtocol Implementations fromFormal Specifications 5

Implementation: The protocol is implemented by, either manually or auto-
matically, generating code that can be compiled to an executable program that
conforms to the specification.

Implementation Verification: Two approaches can be taken to ensure the
correctness of the concrete implementation. In both cases the ideal is to be able
to prove that the generated code is a refinement of the security protocol speci-
fication. Either the generated code for each protocol must be verified to ensure
equivalence to the specification, or the translation process must be proven cor-
rect and the mappings from specification language constructs to implementa-
tion code must shown to preserve the specification language semantics Whalen
and Heimdahl, 1999.

This paper is concerned mainly with the last two phases: implementation
and implementation verification, as indicated in the boxed area of Figure 1.
These phases produce the output of the development process: an executable
program that conforms to the security protocol specification for which the de-
sired security properties hold.

Obviously it is desirable, and convenient, to be able to generate a protocol
implementation from a specification defined in the same language used for
analysing the correctness of the specification. This avoids the possibility of
protocol semantics being lost in the translation from one specification language
to another, and helps preserve them during the implementation phase. To that
end we have selected the Spi Calculus to use as input for our code generator.

2. The Spi Calculus

The Spi Calculus, defined by Abadi and Gordon in Abadi and Gordon, 1998,
consists of a number of terms, such as names, variables, encrypted terms and
pairs, and some simple processes which incorporate actions that include send-
ing and receiving messages, decryption, term matching and parallel compo-
sition. Each of the processes has a simple, well defined behaviour. Despite
it small size and relative simplicity, the Spi Calculus (and the � -calculus it is
based on) is powerful in its ability to both describe, and reason about, the be-
haviour of concurrent systems Milner et al., 1992 - of which security protocols
are a special case.

The behaviour of the processes of the � -calculus is defined formally by tran-
sition semantics in Milner et al., 1992. These semantics are extended in Abadi
and Gordon, 1998 to define the behaviour of constructs that the Spi-Calculus
introduces to model cryptographic operations such as symmetric and asymmet-
ric encryption and message digests. These formal definitions provide a basis
for reasoning about the security properties of protocols specified in the Spi Cal-
culus as demonstrated in Abadi and Gordon, 1998. As formal specifications

6

describe the expected behaviour of a protocol explicitly, they also provide a
superior guide for the implementor, whether automated or human.

In the context of program refinement, as described by Morgan in Morgan,
1998, Spi fulfills the roles of specification - it is high level abstraction that
facilitates understanding - and to some extent code - executable instructions
generally in an imperative language. Spi provides an abstraction that allows se-
curity protocols to be easily understood. It also serves as code in the sense that
it defines executable behaviour for all its processes, as unlike the � -calculus it
is based on, Spi does not define the non-executable binary summation process
that specifies that a process

�
can behave as either process � or � arbitrarily.

In this context Spi2Java is essentially a compiler for the Spi Calculus.

Variation for Code Generation

To facilitate code generation we define a few variations to the standard Spi
Calculus. Firstly, some minor syntactic changes are defined to allow security
protocols to be described in plain text files. These include using the ! and ?
characters to indicate output and input respectively - as in Occam PAP, 1995.
We also introduce the terms �����	��

� and ���	������
�� , which evaluate to the public
and private keys of the principal
 respectively, following an element of the
syntax used by the Security Protocol Language described in Crazzolara, 2003.
A process that checks the validity of a timestamp is also defined.

Secondly, only a subset, albeit a comprehensive one, of the terms and pro-
cesses defined by the original calculus are supported: the successor term and
integer case and replication processes are not supported.

Syntax and Semantics

A brief description of the syntax of the Spi Calculus variant and an informal
description of the behaviour of its processes is given below for convenience.
Apart from the variations we have defined, the following is just a summary
of the description in Abadi and Gordon, 1998, which also contains the formal
definition of the language.

An infinite set of names and an infinite set of variables over those names
are assumed. Names range over principal identifiers, nonces, keys and other
values. Letting � , � , � , � and � range over names and
 , � and � over variables,
the terms are defined by the grammar:��������� ! #"

� a name
� ����� � a pair

 a variable$ �&%'�

encryption of
�

with
�(�)+*	(� � � hash of

�

Generating Network SecurityProtocol Implementations fromFormal Specifications 7

����� ��� � public key of �
���	������� � private key of �

and the processes by:

� � � ! #"
� ��� ����� �
�	� ��
�� � �
� ��
 � �
��� � �� � � * ��
 �
�
���
���	����
 � � � " � ��� �
�) * � ����� $
 %'� � � �
�) * ��� �) ����� � � �

The behaviour of these processes is described informally as follows:

� ��� ����� � will output
�

on channel � when an interaction with an input
process occurs, and then run as

�
.

�	� ��

� � � will input a term, say
�

, on channel � when an interaction
occurs and then run as

� � ���

 i.e.
�

with
�

substituted for all free
occurrences of
 .

��� � � creates a new, private name � and behaves like
�

. This process is
used to model the generation of nonces.
� � � * ��
 � behaves like

�
if the term

�
is the same as the term

�
or

else it does nothing.

�
��� does nothing.

�����
��
 � ��� " � ��� � allows
�

to be split. If
�

is a pair � � ��� � then� � ���

 � � � �
 is run, otherwise the process does nothing.

�)+* � �!��� $
 %'� � � � runs as
� � �"�

 if

�
is
�

decrypted with with
�

,
otherwise it does nothing.

�)+* �#� �) � ��� � � � runs as
�

if the timestamp � is valid otherwise does
nothing.

To accommodate implementation, a preamble declaring variable types is
specified. The supported types are channel, encryption, hash, id, key, nonce,
term (generic or compound value) and time.

8

3. Protocol Specification Example

As an example of protocol specification using the Spi Calculus we specify
the Needham-Schroeder Public Key Authentication protocol. We first give the
generally used standard notation version, which does not have formally defined
semantics, and then a specification in Spi.

� ��� � $ � � � % ����� � � �� ��� � $ � � � % ����� � � �� ��� � $ � % �����	� � �
This informal description, though simple and fairly intuitive, leaves the

specification of most protocol actions implicit. The burden is on the protocol
implementor to use her experience and understanding of security protocols, to
determine the sequence of programmatic actions that implement this protocol
correctly and with all of the designer’s intended semantics. In particular, this
example demonstrate the failure of the standard notation to explicitly specify
when nonces should be instantiated and whether, and how, values in a received
messages should be verified.

In contrast the Spi specification of the same protocol indicates exactly when
nonces should be instantiated and which received values to verify and how.

The Spi specification defines a process for the initiator role in the protocol:

� (�) �
� �	� � � � � � � � � � � � �
��� � � � � � � � � ���
� � � �

� � � �	�

 �
� � � � � � � � � " ��� �

� ��� $ � � � % ����� � � � ���
�	� � � � �
�) * � � ��� $ � % ��� � ��� � � � �
�����
��
 � � � " � ����
 � * �

� ��� $ � % �����	� � � ���
�
���

This process states explicitly when the initiator should generate the nonce n
to challenge the responder, and how the first nonce in the message returned by
the responder, indicated by the variable x, should be matched against it.

The responder process is specified as follows:

� (�) �
� �	� � � � � � � � � � � � � ���
��� � �
 � � � ���
� � � � �
� � � �	�

Generating Network SecurityProtocol Implementations fromFormal Specifications 9

� � * � � � � � � " �	� � � � �
�)+* � � ��� $ � % ��� � ��� � � � �
�����
��� �
�� " � ���
��� �
� ��� $ ��� � � � % ����� ��
�� ���
�	� � � � �
�)+* � � � � $ � % ��� � ��� � � ���� � � * �

�
���

Like the initiator process, it also explicitly defines the generation of a chal-
lenge nonce and verification of the initiator’s response to the challenge.

A run of the protocol is specified by the parallel execution of the initiator
and responder processes:

� (�) �
� �	� � ��� � � �
��� � ��� � � � � � � � "

�
 �
� � � � � � � � �
 � � * � � � � � � �
where � is a channel allowing

�
and
�

to communicate.

Lowe’s Attack on the Needham-Schroeder Protocol

Even if the implementation is faithful to the specification, an attacker can
successfully masquerade as a legitimate participant in the Needham-Schroeder
protocol, described by Lowe in Lowe, 1995, as follows:

� � � � $ � � � % ����� � � �� � � � � � � $ � � � % ����� � � �� � � � � � � $ � � � % ����� � � �
� � � � $ � � � % ����� � � �
� � � � $ � % ����� � � �
� � � � � � � $ � % ����� � � �

where
�

is the attacker who leads
�

to erroneously believe that he is com-
municating with

�
, when in fact he is talking to

�
.

In Spi this attacker role is specified as follows:

� (�) �
� �	� � � � � � � � � � � � � � � � ��� � � �
��� � � � � � � � � ���
� � � �

� � � �	�

10

� � �) � � � � � � � � � � � � � "
� � � � � � �
�) * � � ��� $ � % ��� � ��� � � � �
�����
��� � � � " � � �
� � ��� ��� � � ������� � � � ���
� � � �#�
� �
� � ��� � ���
� � � � � � �
�) * � � ��� $ � % ���	����� � � ���
� � ��� � ����� � � � ���
�
���

and a run of successful attack can be specified by:

� (�) �
� �	� � � � � � � � ��� � � � � �
��� � ��� � � � � � � � "
 �
� � � � � � � � � � �
� � �) � � � � � � � � � � � � � � �

� � * � � � � � � � �
where � � � is a channel for communication between

�
and
�

, and � � �
is a channel for communication between

�
and
�

. The use of two separate
channels allow the attacker to control communication between

�
and
�

at the
network level. This approach models the Dolev-Yao attacker capabilities Dolev
and Yao, 1981, where an attacker is able to intercept and remove messages sent
by the legitimate protocol participants, as well as introduce new messages onto
the network.

4. The Spi2Java Code Generator

Rules Based Implementation

Spi2Java is implemented in Prolog using the Definite Clause Grammar rules
supported by most Prolog engines Wielemaker, 2003. The third requirement
identified by Whalen and Heimdahl for high integrity code generation is that
“Rigorous arguments must be provided to validate the translator and/or the
generated code” Whalen and Heimdahl, 1999, Page 4. Using Prolog does
not in and of itself provide a proof of correctness of the translator software
(Spi2Java) and hence meet this goal. However, given that in the development
of Spi2Java the specification of the mapping from Spi to Java was essentially
defined using Prolog rules, we can be confident (at least as much as our faith in
the Prolog engine allows), that Spi2Java preserves those mappings. Whether
or not the mappings preserve the semantics of Spi in the Java code is another
matter, broached later in this paper.

Generating Network SecurityProtocol Implementations fromFormal Specifications 11

Specification

 Spi Calculus Process

Init(c, A) =

 (n)

 c!<{n, A}K>.

 nil

 Spi2Java

lexer

parser/

generator

SPI API

Term decrypt(Term, Key); boolean match(Term, Term);

Encryption encrypt(Term, Key);

Term Nonce Hash Channel Identifier PublicKey

Name Key Pair Timestamp Protocol PrivateKey

 Implementation

 Java Code Implements

 Protocol Logic

 Nonce n =

 newNonce();

 send(c,encrypt(

 newPair(n,A,

 K));

 return;

API calls

Figure 2. Code generation using Spi2Java.

It is important to note that formally verifying translator software is not, at
least currently, a completely attainable goal. Doing so would require a veri-
fied programming language in which to implement the translator software, a
verified compiler to compile the software to verifiable machine code, mak-
ing calls to verified libraries, with a verified operating system, all running
on a verified hardware architecture implementation Whalen and Heimdahl,
1999; C.A.R. Hoare and Pandya, 1990.

The SPP API

In our approach we separate the implementation of the protocol logic from
that of the cryptographic algorithms and network communications. We define:

Protocol Logic as the code that maintains protocol state, determines when
and if messages are sent and received, the contents of outgoing messages, the
expected contents of incoming messages, storing message components and and
determining which incoming message components to verify and what compo-
nents they should be verified against.

and

12

Cryptographic and Communications Provider: as provider specific code
that handles the packing and unpacking of message components into byte
streams, implements cryptographic algorithms (e.g. symmetric and asymmet-
ric encryption and message digests) and manages network protocol specific
aspects (e.g. message packing and unpacking, network addresses of principals
and message transport).

spp.Impl

+encrypt(m: Term, k: Key):Encryption

+decrypt(m:Encryption, k:Key):byte[]

+newNonce():Nonce

+unpackIdentifier(is:InputStream):Identifier

...

spi.Protocol

#getImpl():Impl

#send(c: Channel, data: byte[])

#recv(c: Channel): InputStream

...

example.Impl

#encrypt(m: Term, k: Key):Encryption

#decrypt(m:Encryption, k:Key):byte[]

#newNonce():Nonce

#unpackIdentifier(is:InputStream):Identifier

...

spp.Name

spp.Term

+getData():byte[]

+match(t:Term):boolean

+pack():byte[]

spp.Key

+decrypt(cipher_text:byte[]):byte[]

+encrypt(plain_text:byte[]):byte[]

spp.Term

+getData():byte[]

+match(t:Term):boolean

+pack():byte[]

spp.Nonce

example.NameImpl
 example.NonceImpl

example.KeyImpl

#decrypt(cipher_text:byte[]):byte[]

#encrypt(plain_text:byte[]):byte[]

spp.PublicKey

example.PublicKeyImpl

SPP Defined Interface
 Provider Implementation

SPP Implementation
 Key

spp.Channel

+recv():byte[]

+send(buffer:byte[])

example.Channel

+recv():byte[]

+send(buffer:byte[])

Figure 3. UML class diagram of a subset of the SPP API.

Spi2Java generates code that implements the protocol logic. This code
makes calls to the Security Protocol Primitives (SPP) API that abstracts the
low level cryptographic and network communications details. The bridge de-
sign pattern is employed here to decouple the provider specific cryptographic
and communication implementation from the protocol logic code. SPP defines
a set of interfaces for message components such as nonces, principal identifiers
and keys as well as for cryptographic and communications operations (see Fig-
ure 3).

The abstract factory method design pattern is used allowing different providers
to be plugged into the API. It gives the protocol logic code a single point of
access to instances of the concrete provider classes that implement the SPP
defined interfaces for value types and cryptographic and network operations.

Generating Network SecurityProtocol Implementations fromFormal Specifications 13

The flexibility of this approach means that providers can be changed with-
out affecting the protocol logic code generated by Spi2Java. For example: a
provider that implements RSA asymmetric and AES symmetric encryption,
with a stream message and component format using a TCP/IP stack for com-
munications can be swapped for a provider that implements elliptic curve
asymmetric and triple DES symmetric encryption, a bitmap message format
and X.25 network communications, with a simple change of a configuration or
command line option.

Code Generation

Spi2Java emits code for each Spi process definition in a method that is
named after that definition. The Java code segments for all binding Spi pro-
cesses, i.e. those that result in the substitution of a name value for a variable,
are emitted inline. For example the Spi pair splitting process, �����
��
 � ��� "
� � � � , maps to the Java code segment (discussed in detail later):
�����������
	���
����������
� ��������� ��
"!#��$&%'	�(
� ��������� ��
"!#�")*%+
,(
-

. ��!�/*�*0���1*�&�3254&�&67�
��� 8:9�
��&��;"1�1#�
 . ��!�/&�#0 ��1*����2<�

�>=@?&����A�� �#�B�3���C(
	��:?&��� . 2*!D�B�3�B=E/���!D�&FHG&I&J ��F��K�

4*�&6��L(

:�:?&��� . 2*!D�B�3�B=E/���!D�&FHG .HM �N�*�D� � � �"1K�

4*�&6��L(
O
����P�J M � � J�1'!*1&J#F ��6�6RQS=�=�=

Making a method call, instead of emitting code inline, to implement this
process would look something like
�����������
	���
����������
� ��
�!���$&%'	�(
� ��
�!��")*%+
,(
6T!D�&�N�U�WV�	U�XV�
��X�Y�C(
����P�J M � � J�1'!*1&J#F ��6�6RQS=�=�=

in C++. However this is not possible in Java as it does not have language
support for “out parameters” (or pointers to pointers in C++ parlance) which
would be required to assign values to the variables x and y. Using wrapper
classes to encapsulate these variables, in lieu of out parameters, is a possible

14

alternative, but would introduce an extra level of complexity to the code, as
well as cluttering it with method calls instantiate wrappers and to set and get
values from the wrapper instances.

Names of temporary variables required by some code segments are re-used
in inlined code segments throughout the emitted code. Re-use is possible by
declaring and operating on temporary variables in locally nested scopes. The
nested scopes are introduced by a new Java block declared by the “

$
” and “

%
”

symbols, as demonstrated in the pair splitting code segment listing. This ap-
proach is preferable to the alternatives: inlining code without nesting it in a
new scope, requiring the use of arbitrarily large numbers of temporary vari-
able names, which introduces extra logic to the code generator in order track
them, or making method calls, which introduces new scope, but for the reasons
discussed previously is not a viable alternative.

Using methods calls instead of inlined code segment would also break the
safe practice of declaring all Java variables that correspond to Spi variables as
final, meaning they can only be assigned to once, which faithfully implements
the Spi model of processes substituting variables with name values as they run.

Spi Process to Java Mapping

Spi2Java uses the mappings defined in this subsection to generate Java code
from Spi processes. As mentioned, the specification of these mappings is prop-
erly defined by the Prolog rules which associate each Spi process type with a
Java code segment template. The Prolog direct clause grammar rules manage
parsing the Spi processes, and each such rule has sub-rules that generate the
Java code segment to be emitted from the associated code template.

Spi2Java also emits code to trace the protocol progress and state by means
of updating a user interface. The interface also provides the user with a way
control the run of protocol role, by stepping through the Spi processes that
define it. In the Java code segment listings that follow we omit the tracing
code for the purposes of clarity and brevity.

Output, � ��� ����� � , maps to a call to the void spi.Protocol.send(spp.Channel,
spp.Term) method with the parameters channel c, the channel for communi-
cation, and term N, the term to be communicated. The code emitted for this
process is thus:

��� F � ��I#%U=
6N� � M � FB�XI �C(
����P�J M � � J�1�!*1&J#F��#6�6 QS=�=�=

The parameters c and N may be Java variables, or expressions, that evaluate
to values of types spp.Channel and spp.Term respectively.

Generating Network SecurityProtocol Implementations fromFormal Specifications 15

Input, �	� ��
�� � � , maps to a call to the Term spi.Protocol.recv(spp.Channel)
method, which is passed c as the channel parameter and returns a type that is
of, or extends, spp.Term. The emitted code is of the form:
��� F��C�
	��B=
� ��������� ��
"!#�&%'	:�

?&��� . 2&!D�B�3� = /���!D�*F�G�� ��
"!#�&%B�W1��#F�� � F&���"�L(
����P�J M � � J�1'!*1&J#F ��6�6RQS=�=�=

where � Type � is the type of the variable x and is determined by a lookup ta-
ble that the code generator creates from the specification’s variable type pream-
ble.

Restriction, ��� � , is used to model nonce and timestamp creation and maps
to a call to either spp.Nonce spi.Protocol.newNonce() or spp.Timestamp spi.Protocol.newTimestamp()
depending on the type, again determined from the lookup table, of the variable
n. Thus if n is of type nonce the code generator emits code of the form:
��� � �Y�
I&J ��F��7� �'��� 8&I&J � F �K�T�L(
����P�J M � � J�1'!*1&J#F ��6�6RQS=�=�=

or, if n is of type time, code of the form:
��� � �Y�
���T2D��6H�*��2&!�� ����� 8&�D� 2��#6H�#�32*!��3�L(
����P�J M � � J�1'!*1&J#F ��6�6RQS=�=�=

to implement this process.
Term Matching,

� � � * ��
 � , is mapped to a return statement that is guarded
by checking a call to boolean spi.Protocol.match(Term, Term):
����� 2 ��6R�	�
� � � � 2 ����F�
��@2 � �C���
-

1*���"/*1��S(
O
����P�J M � � J�1'!*1&J#F ��6�6RQS=�=�=

The method boolean spi.Protocol.match(Term, Term) is implemented as fol-
lows:
!&1*J��*�#FH�*� M � �3�D���
��J�J&�����N�'2�����F�
,�

� �3�D���7�*�"1N2�� �
� �3�D���7�*�"1N2��C�

-

16

1*���"/*1�� ��= 2 � �DF�
�� �Y�L(
O

The method relies on the correctness of the provider’s implementation of
the boolean spp.Term.match(Term)method on the spp.Term interface. Imple-
mentations must return a boolean value indicating whether the parameter the
method is called with, is equal to the instance it is called on.

Pair Splitting, �����
��
 � � � " � � � � , is implemented by extracting the raw
data from the Java spp.Term instance corresponding to the Spi term

�
. The

two terms,
 and � , that
�

is to be split into are then unpacked from this data.
To make it easier for the provider implementation to pack and unpack terms
from raw data, we introduce a restriction on creating and splitting pairs that
states that the first term must always be a name or name variable (i.e. it must
be an atomic value). This restriction means that when the provider code packs
and unpacks terms to send and receive over the communications network, it
does not need to store extra information about the structure of the pairs - which
may be nested to arbitrary depth, e.g. the message

$ � � � � � % ����� � � � would
be specified

$ � � � � � � � � � % ����� � � � given that
�

and
�

are names or name
variables.

Apart from simplicity, this restriction has the advantage of making it possi-
ble to implement providers that are message compatible with existing security
protocol implementations, as such implementations are unlikely to use pairing
to structure their message data.

The Java code segment for this process is thus:

�����������
	���
������ ���
� ��������� ��
"!#��$&%'	�(
� ��������� ��
"!#�")*%+
,(
-

. ��!�/*�*0���1*�&�3254&�&67�
����8�9�
��&��;"1�1#�
 . ��!�/&�#0 ��1*����2<�

�>=@?&����A�� �#�B�3���C(
	��:?&��� . 2*!D�B�3�B=E/���!D�&FHG&I&J ��F��K�

4*�&6��L(

:�:?&��� . 2*!D�B�3�B=E/���!D�&FHG .HM �N�*�D� � � �"1 �

4*�&6��L(
O
����P�J M � � J�1�!*1&J#F��#6�6 QS=�=�=

where � TypeX � and � TypeY � are the types of the variables x and y respec-
tively.

Decryption, �) * � ����� $
 %'� � � � , maps to a call to
InputStream spi.Protocol.decrypt(spp.Encryption, spp.Key). This call will prop-

Generating Network SecurityProtocol Implementations fromFormal Specifications 17

agate down to the public byte[] spp.Key.decrypt(byte[]) method that is imple-
mented by the provider according encryption algorithm associated with the
type of key i.e. either symmetric, public or private.
��� F"�*6 � � J � -�	*O I5���
� ��������� ��
"!#�&%'	:�

?&��� . 2&!D�B�3� = /���!D�*F�G�� ��
"!#�&%B�
M �#FN1�
"!&�U� � � I����L(

����P�J M � � J�1'!*1&J#F ��6�6RQS=�=�=

5. Implementation Example

To demonstrate Spi2Java we generate an implementation from the Spi spec-
ification of the Needham-Schroeder protocol, and the attack on it, given earlier.
We list some sample generated code and then look at a run of a successful at-
tacked on the protocol using the generated code for the initiator, responder and
attacker roles.

The generated code for the Init process, which specifies the initiator role
of the protocol, is given by the listing in Figure 4. Again, code generated
for tracing and state monitoring, and some generated comments, have been
omitted. Some minor formatting changes have also been made to facilitate
typesetting.

Figure 5 shows a screenshot of the traces and final states of concurrent ini-
tiator, responder and attack runs of the Needham-Schroeder protocol roles.
The implementation of each role’s process prints the time of execution and the
specification of each action to the trace window. Each process also updates the
state window whenever a variable is substituted with a value.

The screenshots - showing the final states of the initiator, responder and
attacker runs - clearly demonstrate that the attacker has subverted the protocol
by gaining possession of the nonces � and � which the responder believes to
be suitable shared secrets between himself and the initiator. Thus the attacker
can masquerade as the initiator. Should the responder base the confidentiality
and/or authenticity of continued communication with the party he believes to
be initiator, the attacker will be able to continue this charade.

6. Current Work

While we have addressed the issue of verifying Spi2Java in terms of cor-
rectly performing the specified mappings from Spi to Java code, the issue of
the correctness of those mappings needs to be resolved. We are currently work-
ing on showing that the mappings preserve the Spi semantics in the Java code
and will correct any mapping definitions that fail to do so.

Our approach will follow the refinement methodology and involve setting
up, and satisfying, proof obligations for each Java code segment. This entails

18

��� . ���N�U� F ��;U��9 ���
!�/����*��F �*J#� M5. ���N�U� � �3�D���+P
��N���#�&��F � � �3�D��� .NM �N�*��� � � �"1�;��

� ���D��� .NM � �&�D� � ����1�9 �
-

� ���D���+I*JN� F �+� �'����8�I*JN� F�� �3�C(��� � �C�
��� F � ��- � �S��;D� ON!�/����W9 �N%�=
6N� � M � FB� � ��FN1�
�!*� � ��� 8&Q*�*�N1 � �<� ;��L� !�/����W9 �����C(
��� F��L� ���B=
� ���D�����"��FN1�
"!*����JN� ����?&��� . 2&!D�B�3� = /���!D�*F�G���� FN1�
"!&�D��JH�,�

1*�*F�� � F*���L(
��� F"�#6N�:��J � -��&ON!&1D� �U�
;D�+�3�
� ���D���+�*��1 2����:?&��� . 2*!D�B�3�B=E/���!D�&FHG&�&�"1N2S�

M �*FN1�
"!*� � �K� !*1���� �
;������C(
�������"���W	�� 2L�����5�3�
� ���D���+I*JN� F ��	�(� �3�D���+I*JN� F��R2 (
-

. ��!�/&�#0���1*����2 4*�&67���#��8:9�
��*�";�1�1*��
 . ��!�/*�*0���1&�&�32S�
�,=@?&�"�"A�� �#� �T���C(

	��:?&��� . 2&!D�B�3� = /���!D�*F�G&I&J � F �K� 4&��6&�L(
25�:?&��� . 2&!D�B�3� = /���!D�*F�G&I&J � F �K� 4&��6&�L(

O
�����@	 �&6R� �
� � � � 2�����F�
,�W	�� �C��� 1&�"��/*1"�<(
��� F � ��-�2�ON!�/ �,� 9 � %U=
6N� � M � FB� � ��FN1�
�!*� �@2 � !�/ �,�W9������L(
���7� �"�
1&�"�"/&1"�<(

O

Figure 4. Generated code for the Needham-Schroeder initiator role.

relating Spi semantics to those of the Java language. While there is no offi-
cial formal semantics for the Java language, an Abstract State Machine (also
referred to as evolving algebras) semantics has been defined in Borger and
Schulte, 1999. We intend to use this definition of Java for this process along
with the transition semantics defined for the Spi Calculus.

Successfully completing this task will allow us to meet the second require-
ment for high integrity code generation identified in Whalen and Heimdahl,
1999 which states “The translation between a specification expressed in a
source language and a program expressed in a target language must be for-
mal and proven to maintain the meaning of the specification.”

Generating Network SecurityProtocol Implementations fromFormal Specifications 19

Figure 5. Concurrent runs of Spi2Java generated implementations of the Needham-Schroeder
participant roles and attack.

7. Conclusion

In this paper we have described our approach to bridging the gap between
security protocol specification and implementation using the Spi2Java code
generation tool. We have shown that by a using formal specification language,
the Spi Calculus, and implementing Spi2Java in a logic programming lan-
guage, Prolog, we can progress towards the ultimate goal of meeting Whalen
and Heimdahl’s requirements for high integrity code generation. Further to
this goal, the approach to our current work - validating the refinement of the
Spi Calculus processes to Java code - is briefly outlined. Despite this valida-
tion not being complete, we list the mappings from Spi processes to Java code
segments that Spi2Java currently uses. This acts not only as a reference for the
potential user but also to highlight the relative simplicity of the mappings.

The separation of protocol logic implementation from cryptographic and
network specific implementation concerns by the SPP API, contributes to im-
plementation correctness, by allowing Spi2Java to be focused on just the pro-
tocol logic aspect and not on lower level abstractions which would make the
generated code far more complex.

Finally we demonstrate the potential of Spi2Java by using it to implement
not only the legitimate roles of the Needham-Schroeder protocol, but also the
attacker role described by Lowe. These implementations are executed concur-
rently to give a trace of a successful run of the attack on the protocol.

20

We believe that the above indicates that using a more formal and automated
approach to implementing network security protocols simplifies the process
and reduces the potential for errors. Hence it adds value to the process of
security protocol development as a whole.

References
(1995). Occam 2.1 reference manual. SGS-THOMSON Microelectronics Limited.
Abadi, M. and Gordon, A. (1998). A Calculus for Cryptographic Protocols: The Spi Calculus.

Technical Report SRC Research Report 149, Digital Systems Research Centre.
Borger, E. and Schulte, W. (1999). A programmer friendly modular definition of the semantics

of java. In Alves-Foss, J., editor, Formal Syntax and Semantics of Java, volume 1523 of Lect.
Notes in Comp. Sci., pages 353–404. Springer-Verlag.

C.A.R. Hoare, H. Jifeng, J. B. and Pandya, P. (1990). ESPRIT BRA 3104 ProCoS project:
Provably Correct Systems. Technical report, Oxford University Computing Laboratory.

CERT. CERTő Advisory CA-2003-26 Multiple Vulnerabilities in SSL/TLS Implementations.
CERT. Microsoft private communication technology (pct) fails to properly validate message

inputs.
CERT. Vulnerability Note VU#104280 Multiple vulnerabilities in SSL/TLS implementations.
Crazzolara, F. (2003). Language, Semantics, and Methods for Security Protocols. PhD thesis,

University of Aarhus.
Davide Pozza, R. S. and Durante, L. (2004). Spi2Java: Automatic Cryptographic ProtocolJava

Code Generation from spi calculus. In 18th International Conference on Advanced Informa-
tion Networking and Applications (AINA’04) Volume 1, page 400. IEEE.

Dawn Xiaodong Song, A. P. and Phan, D. (2001). AGVI - Automatic Generation, Verification,
and Implementation of Security Protocols. In Proceedings of the 13th International Confer-
ence on Computer Aided Verification, pages 241–245. Springer-Verlag.

Denker, G. (2000). Design of a CIL connector to Maude. In H. Veith, N. H. and Clarke, E.,
editors, Workshop on Formal Methods and Comuter Security. Carnegie Mellon University.

Didelot, X. COSP-J: A Compile for Security Protocols. Master’s thesis, University of Oxford.
Dolev, D. and Yao, A. (1981). On the security of public key protocols. Technical report, Stanford

University.
KDE. KDE Security Advisory: KDE 2.2 / Konqueror Embedded SSL vulnerability.
L. Gong, R. N. and Yahalom, R. (1990). Reasoning about belief in cryptographic protocols. In

Cooper, D. and Lunt, T., editors, Proceedings 1990 IEEE Symposium on Research in Security
and Privacy, pages 234–248. IEEE Computer Society.

Lowe, G. (1995). An attack on the needham-schroeder public-key authentication protocol. In-
formation Processing Letters, 56(3):131–133.

Lowe, G. (1996). Breaking and fixing the Needham-Schroeder public-key protocol using FDR.
In Tools and Algorithms for the Construction and Analysis of Systems (TACAS), volume
1055, pages 147–166. Springer-Verlag, Berlin Germany.

M. Burrows, M. A. and Needham, R. (1996). A logic of authentication, from proceedings of the
royal society, volume 426, number 1871, 1989. In William Stallings, Practical Cryptography
for Data Internetworks. IEEE Computer Society Press.

Millen, J. and Muller, F. (2001). Cryptographic protocol generation from CAPSL. Technical
Report SRI-CSL-01-07, SRI International.

Generating Network SecurityProtocol Implementations fromFormal Specifications 21

Milner, R., Parrow, J., and Walker, D. (1992). A calculus of mobile processes, Parts I and II.
Journal of Information and Computation, 100(1):1–40 and 41–77.

Morgan, C. (1998). Programming from specifications (2nd ed.). Prentice Hall International (UK)
Ltd.

Ping Yang, C. R. R. and Smolka, S. A. (2003). A logical encoding of the pi-calculus: Model
checking mobile processes using tabled resolution. In Verification, Model Checking and Ab-
stract Interpretation (VMCAI), volume 2575 of Lecture Notes in Computer Science, pages
116–131, New York, NY. Springer.

Thayer, J., Herzog, J., and Guttman, J. (1999). Strand spaces: Proving security protocols correct.
Journal of Computer Security.

Whalen, M. and Heimdahl, M. (1999). On the requirements of high-integrity code generation.
In Proceedings of the Fourth IEEE High Assurance in Systems Engineering Workshop.

Wielemaker, J. (2003). SWI-Prolog 5.2.10 Reference Manual.

